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Problem

• Modern industrial processes generate complex data

• Profiles: data pairs (x, y) that can be described as y = f(x)

• Examples

– Calibration curves in chemical processing

– Oxide thickness across wafers in semiconductors

– Radar signals of military targets.

• Examine sequences of such data sets



Problem

• Want to know if a profile is different from some desired, in-control
state

• When did change occur?

• What is the nature of change?

• Want a method that applies to very general profile functions f



Problem

• Much work on linear profiles (Woodall 2004, Mahmoud et al. 2007)

• Estimate changes in parameters (slope, intercept, . . .)

• Determine when parameters change
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Problem

• What if profiles are not linear?

• Or more generally, not parametric?
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Problem

• f0 is known, in-control profile, f t is observed profile

• Suppose f t is a very general function:

‖f t − f0‖22 =
∫

(f t − f0)2 < ∞

• No constraint on form of the profile

• Very weak constraint on the difference of profiles



Formulation of Problem

• Observed profiles
yt = f t(x) + ε

• ε ∼ normal (0, σ2), independent

• Hypotheses

H0 : ‖f t − f0‖22 = 0, t = 1, 2, . . . , T

Ha : ‖f t − f0‖22 > 0, t = τ + 1, τ + 2, . . . , T

• In particular

f0 = f1 = · · · = fτ 6= fτ+1 = · · · = fT

• Find τ



Formulation of Problem

• These L2 differences can be written in terms of wavelets coefficients

‖f t − f0‖22 = ‖θt − θ0‖22

• Moved from function domain to wavelet domain

• Why wavelets?

– Well-suited for nonparametric estimation

– Don’t need to know much about the form of the functions
being estimated

– Optimally small estimation errors (Donoho & Johnstone 1994)

– Fast computation time

– Good at local and global estimation simultaneously



Formulation of Problem

• Rewrite hypotheses in terms of wavelets

H0 : ‖θt − θ0‖22 = 0 for t = 1, 2, . . . , T

Ha : ‖θt − θ0‖22 > 0 for t = τ + 1, τ + 2, . . . , T

• Use observed (noisy) data and Discrete Wavelet Transform (DWT)
to estimate differences

‖f t − f0‖22 = ‖θt − θ0‖22 ≈ ‖θ̃t − θ̃0‖22



Formulation of Problem

• Set
Wt =

n

σ2
‖θ̃t − θ̃0‖22

• Then, for each t, Wt ∼ χ2
n,γ where

γ =
n

σ2

∑

j

(θt
j − θ0

j )2 =
n

σ2
‖θt − θ0‖22

is the non-centrality parameter

• Equivalent hypotheses:

H0 : γ = 0 for t = 1, 2, . . . , T

Ha : γ > 0 for t = τ + 1, τ + 2, . . . , T



Formulation of Problem

• Form a likelihood using Wt, t = 1, 2, . . . , T

• Under the null hypothesis,

L0 =
T∏

t=1

f(wt) =
T∏

t=1

w
n/2−1
t e−wt/2

2n/2Γ(n/2)
.

• Under the alternative,

La =
τ∏

t=1

w
n/2−1
t e−wt/2

2n/2Γ(n/2)

·
T∏

t=τ+1

{
w

n/2−1
t e−wt/2

2n/2

∞∑

k=0

e−γ/2(γ/4)k

k!
· wk

t

Γ(n/2 + k)

}



Formulation of Problem

• The likelihood ratio can be expressed as

La

L0
=

T∏
t=τ+1

{ ∞∑

k=0

e−γ/2(γ/4)kwk
t

k!
· Γ(n/2)
Γ(n/2 + k)

}

• Simplified, the log of the likelihood ratio is

log
(

La

L0

)
≈ γ

2

T∑
t=τ+1

(
wt

E(Wt|H0)
− 1

)

• Need to estimate γ



Test

• Estimate γ with DWT and thresholding

• Wavelets are sparse: they concentrate the information in a function
into relatively few coefficients

• So, most coefficients can be treated as 0

• Thresholding sets to 0 (or shrinks toward 0) select coefficients θ

• Gives accurate estimation

• Removes noise



Test

• Let γ̂(τ) be thresholded wavelet estimate of γ

γ̂(τ) =
1

T − τ

T∑
t=τ+1

‖θ̂t
d‖22 −

1
τ

τ∑
t=1

‖θ̂t
d‖22

• Depends on unknown τ



Test

• Reject H0 when likelihood ratio is large

• When is log (La/L0) largest? ⇒ When τ is correctly specified

• So, maximize log (La/L0) over τ

• Provides estimate of τ ⇒ estimate of γ ⇒ estimate of LR



Test

• Estimate of τ uses prior information: all profiles up to the current
profile are observed

• Use this to determine if LR is “too large”

• “Too large” is found via simulation (ARL0 = 200)

• If LR large, then profiles after τ are out-of-control

• Otherwise, profiles are still in-control at T



Simulation

• This proposed method works well, even for very small differences
(L2 difference)

• Simulated several types of difference functions

– Parabolic

– Horizontal shift

– Broken Line

– Isolated linear shifts

– Others

• Used erratic profile
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Simulation

• Compare to M1 (Fan 1996), M2 (Jin & Shi 2001), M3 (Jeong et
al. 2006)

• Compare via ARL0

• Three wavelet based estimators

• These three do not provide τ or size of divergence

• Do not use prior information, either



Parabolic 0.01 0.04 0.09 0.16 0.25

M1 124.87 36.84 8.02 2.18 1.14

M2 88.07 14.64 2.69 1.16 1.01

M3 65.68 21.89 6.96 2.12 1.14

M∗ 74.18 5.29 1.39 1.02 1.00

Broken Line 0.01 0.04 0.09 0.16 0.25

M1 126.80 37.28 8.38 2.30 1.18

M2 91.84 14.26 2.70 1.14 1.00

M3 69.36 19.52 6.38 2.12 1.17

M∗ 85.57 8.83 1.69 1.03 1.00



Parabolic 0.01 0.04 0.09 0.16 0.25

ARL10 76.07 5.30 1.32 1.01 1.00

τ̂ 50.13 11.84 9.69 9.86 9.99

â 0.03 0.05 0.08 0.15 0.25

Broken Line 0.01 0.04 0.09 0.16 0.25

ARL10 86.62 7.94 1.67 1.03 1.00

τ̂ 55.33 12.79 9.99 9.86 9.99

â 0.03 0.04 0.08 0.15 0.25

τ = 10



Simulation

• What is the scale of these differences we are detecting?

• On next graph, exaggerate the “Broken Line” difference by 100 (a = 25)
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Simulation

• What was actually looked at was a ≤ 0.25

• Next graph, a = 0.25, the largest difference considered
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Radar Profiles

• Proposed method now applied to profiles of military radar signatures

• Changes from a known profile of the target could indicate

– A vehicle had moved

– Some new ground activity was taking place

• Proposed method correctly identified out-of-control profile for any order-
ing of profiles
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Summary

• Examine functions in wavelet domain

• Form likelihood ratio

• Use wavelet thresholding to estimate parameters in the LR

• Proposed methods specifies when to reject H0

• Tells when out-of-control profile occurred (τ̂)

• Estimates amount of divergence from in-control

• Makes use of prior information

• Joint work with J. Simpson & J. Pignatiello (FSU, IE Dept)
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